Flag Enumeration in Polytopes Eulerian Partially Ordered Sets and Coxeter Groups

نویسنده

  • Louis J. Billera
چکیده

We discuss the enumeration theory for flags in Eulerian partially ordered sets, emphasizing the two main geometric and algebraic examples, face posets of convex polytopes and regular CW -spheres, and Bruhat intervals in Coxeter groups. We review the two algebraic approaches to flag enumeration – one essentially as a quotient of the algebra of noncommutative symmetric functions and the other as a subalgebra of the algebra of quasisymmetric functions – and their relation via duality of Hopf algebras. One result is a direct expression for the Kazhdan-Lusztig polynomial of a Bruhat interval in terms of a new invariant, the complete cd-index. Finally, we summarize the theory of combinatorial Hopf algebras, which gives a unifying framework for the quasisymmetric generating functions developed here. Mathematics Subject Classification (2010). Primary 06A11; Secondary 05E05, 16T30, 20F55, 52B11.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The cd-index of Bruhat Intervals

We study flag enumeration in intervals in the Bruhat order on a Coxeter group by means of a structural recursion on intervals in the Bruhat order. The recursion gives the isomorphism type of a Bruhat interval in terms of smaller intervals, using basic geometric operations which preserve PL sphericity and have a simple effect on the cd-index. This leads to a new proof that Bruhat intervals are P...

متن کامل

Bruhat and balanced graphs

We generalize chain enumeration in graded partially ordered sets by relaxing the graded, poset and Eulerian requirements. The resulting balanced digraphs, which include the classical Eulerian posets having an R-labeling, implies the existence of the (non-homogeneous) cd-index, a key invariant for studying inequalities for the flag vector of polytopes. Mirroring Alexander duality for Eulerian po...

متن کامل

SIGNS IN THE cd-INDEX OF EULERIAN PARTIALLY ORDERED SETS

A graded partially ordered set is Eulerian if every interval has the same number of elements of even rank and of odd rank. Face lattices of convex polytopes are Eulerian. For Eulerian partially ordered sets, the flag vector can be encoded efficiently in the cd-index. The cd-index of a polytope has all positive entries. An important open problem is to give the broadest natural class of Eulerian ...

متن کامل

Peak Quasisymmetric Functions and Eulerian Enumeration

Via duality of Hopf algebras, there is a direct association between peak quasisymmetric functions and enumeration of chains in Eulerian posets. We study this association explicitly, showing that the notion of cd-index, long studied in the context of convex polytopes and Eulerian posets, arises as the dual basis to a natural basis of peak quasisymmetric functions introduced by Stembridge. Thus E...

متن کامل

Flag Vectors of Eulerian Partially Ordered Sets

The closed cone of flag vectors of Eulerian partially ordered sets is studied. It is completely determined up through rank seven. HalfEulerian posets are defined. Certain limit posets of Billera and Hetyei are half-Eulerian; they give rise to extreme rays of the cone for Eulerian posets. A new family of linear inequalities valid for flag vectors of Eulerian posets is given.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010